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ABSTRACT 

A direct-use geothermal doublet can deliver low-emission heat for decades. How long exactly it can deliver heat for, is hard to predict. It 

depends on geological and technical characteristics and on the minimum required temperature of the water that is produced from the 

subsurface. Production temperature is typically constant for the first years or decades, and begins to decrease once the colder, re-injected 

water reaches the producer well. This evolution can be calculated numerically when subsurface conditions are well-known, but that is not 

usually the case. Especially in the planning phase of doublets, when practical experience is not yet available for new locations, this 

complicates economic projections. Because direct-use geothermal doublets often have high investments costs and narrow profit margins, 

this uncertainty can hold back permits and investments in a reliable, sustainable source of heat.  

It would be useful to be able to quickly estimate production temperature as a function of time for any geological and technical scenario. 

In this study, we develop a method to provide such an estimate. We combine an analytical calculation of thermal breakthrough time 

(following Gringarten and Sauty, 1975) with a parameterized equation for production temperature after thermal breakthrough. This allows 

us to calculate expected system lifetime. The average root mean squared error (RMSE) of our predicted temperature curves is 0.7K. They 

are returned nearly instantly and allow to analyze and compare temperature evolution and lifetime across large numbers of scenarios. 

1. INTRODUCTION 

The production of heat and electricity from deep geothermal energy sources is increasing in many regions around the world (Lund and 

Toth (2021), Gutiérrez-Negrín (2024)). In areas with sedimentary basins and low to medium geothermal gradients, such as the West 

Netherlands Basin, heating is the main application because it makes better use of the available temperatures. The typical setup is a doublet, 

which consists of one well for the production of hot water and one well for the re-injection of colder water. Multiple doublets can be 

installed in the same area to form a larger system. 

Decision makers and project planners that want to permit and build new geothermal systems are often faced with a tight economic outlook. 

Initial costs for exploration and drilling are high, but successful production is uncertain, especially in green field areas. At the same time, 

break-even times tend to be long because of narrow profit margins. This means that there can be significant financial risks associated with 

new geothermal projects, slowing down a development that is much-needed for the energy transition.  

1.1 Techno-economic assessment of direct-use geothermal doublets 

Techno-economic assessment (TEA) aims to predict the economic outcomes of a planned installation, and how it should be built and 

operated to increase the chances of economic success. The work flow of a TEA consists of three main steps. First, input parameters are 

defined that describe the scenario to be investigated. These include expected geological properties, the technical doublet setup, and 

economic conditions. The second step is the calculation or estimation of key physical variables such as production temperature, required 

pumping power, and produced heating power. Thirdly, economic indicators are calculated based on these results and the economic input 

parameters. Examples are net-present value (NPV) and levelized cost of heat (LCOH). The three steps can be run multiple times in order 

to compare different development scenarios (Daniilidis et al., 2020, Lowry et al., 2021), find optimal operational strategies (Willems and 

Nick, 2019, Zaal et al., 2021), or understand the effects of uncertainty (Daniilidis et al., 2017, Gkousis et al., 2024). 

1.2 Goal of this study 

Because geothermal heating systems are long-term projects that only pay off over decades, a prediction of how production temperature 

TPrd will develop over time is an important component of a TEA. The amount of produced thermal power that can be sold is one of the 

most important variables for any economic indicator, and directly proportional to the thermal energy that can be extracted from the 

produced water.  

While a number of TEA tools for deep geothermal energy have been published, to our knowledge none of them are aimed at heat 

production from porous reservoirs and also include the transient aspect of TPrd(t). Beckers and McCabe (2019) summarize that some tools 

were made for electricity production from fractured rocks, such as GETEM (US DOE 2016), HDRec (Heidinger et al. 2006) and Euronaut 

(Heidinger 2010). DoubletCalc (Mijnlieff et al., 2014) is aimed at heating applications and includes detailed calculations of pressure and 

heat developments in the system, but assumes steady state conditions. GEOPHIRES2 (Beckers and McCabe, 2019) includes models for 

electricity as well as heat, and also for temperature decline. However, in the heating mode, TPrd(t) is approximated with a linear decline, 
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the slope of which has to be specified by the user. Alternatively, a pre-calculated temperature profile can be input or calculated by 

TOUGH2 on the fly, but this requires time-consuming numerical simulations.  

The main goal of this study was to build the physics component of a TEA model for geothermal heating doublets. It should be fast and 

reliable for a large range of geological and operational parameters. What distinguishes it from existing efforts is the ability to predict 

production temperature evolution and, given a minimum acceptable production temperature TMin, system lifetime. 

2. THE MODEL 

The model input is a doublet scenario, described by the geological and technical parameters listed in Table 1. It provides four key outputs 

that can be used in a TEA: 1) The pressure difference Δp between the two wells which has to be overcome by pumps, 2) The time of 

thermal breakthrough after which temperature starts to decline, 3) Transient production temperature TPrd (t), and 4) expected system 

lifetime for a minimum acceptable production temperature TMin.  

Δp and tBT can be obtained analytically using the assumptions made by Gringarten and Sauty (1975). The temperature evolution after 

breakthrough is more complex, which is why it is usually omitted or approximated as a simple decline function. To be able to predict it 

more accurately, we carried out numerical simulations of a large number of doublet setups that varied in seven key parameters (bold rows 

in Table 1). We fitted the observed temperature profiles with functions of the type  
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Where TInj is the re-injection temperature and ΔTMax is the difference between initial production temperature T0 and TInj. We built an 

interpolator that provides estimates of the coefficients m and n for any new combination of parameters. Eq. (1.1) was chosen out of 

candidates including logistic, polynomial and rational functions because it provided the best fits with only two unknown coefficients. 

Table 1: Input parameters for the Doublet model. Bold parameters were varied and enter into the prediction of TPrd(t) coefficients. 

Component Parameter Unit Description Range / Value 

Physics - Geology d m Top depth of the reservoir 1500 – 2500 

Physics - Geology h m Height of the reservoir 20 – 100 

Physics - Geology φ fraction of 1 Rock porosity 0.1 – 0.2 

Physics - Geology k mD Rock permeability 150 – 450 

Physics - Geology αconf W/(mK) Confining layer thermal conductivity 2 – 3 

Physics - Geology ρR kg/m3 Rock density 2300 

Physics - Geology CpR J/(kgK) Rock heat capacity 1000 

Physics - Geology Tsurf ℃ Surface temperature 10 

Physics - Geology Tgrad K/m Temperature gradient 0.03 

Physics - Technical L m Well spacing 400 – 1200 

Physics - Technical q m3/h Flow rate 150 – 450 

Physics - Technical TInj ℃ Injection temperature 20 – 50 

Physics - Technical rWell m Well radius 0.1016 

 

The Gringarten assumptions used for Δp and tBT are: 

1. The reservoir is homogeneous, horizontal, and isotropic.  

2. The fluid flow is Darcy flow. 

3. The fluid and the rock matrix are in local thermal equilibrium everywhere.  
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4. There are no confining layers.  

5. There is no horizontal conduction of heat. 

6. Vertical heat conduction is infinite, so T(z) in the reservoir is constant. 

We used the reservoir simulator DARTS (open Delft Advanced Research Terra Simulator, Voskov et al., (2025)) to validate these results 

by comparing them with two versions of DARTS models: In one, all six Gringarten assumptions are implemented to test the match 

between the analytical and numerical computation of the same equations and boundary conditions. In the other, only assumptions 1-3 are 

implemented. There are confining layers with varied thermal conductivity, as well as a fixed thermal conductivity of 3W/mK in the 

reservoir. This allows to test the validity of the assumptions and their impact on calculated Δp and tBT. In the following, the two versions 

are referred to as DARTS-Ana and DARTS-Full, respectively.  

For the temperature curves that informed the interpolator, we used DARTS-Full models. While the presence or absence of confining layers 

does not significantly influence time of thermal breakthrough (Fig. 2, de Bruijn et al., 2021), it slows down the decline in TPrd afterwards 

(Wang et al., 2021), so models without confining layers would be unrealistically pessimistic.  

The choice of boundary conditions and grid resolution follows the approach outlined in Chen et al. (2025). All models are 3km wide and 

3km + well spacing L long. They have a horizontal resolution of 10m in the inner zone around the doublet, and up to 50m near the edges 

(Fig. 1a). Vertical resolution is 2m in the reservoir and confining layers, where existing, are 300m thick with a vertical resolution graded 

from 2 – 50m. 

 

Figure 1. a) DARTS-Full model domain, here L = 1000m, d = 2200m, h = 100m, q = 200m3/h and TInj = 30℃. Producer and injector 

wells in red and blue, respectively. b) Pressure profiles along a doublet plane cross section. Analytical vs. DARTS-Ana (no 

confining layers) and DARTS-Full (confining layers). 

2.1 Pressure 

The initial pressure at the mid-depth of the reservoir is 
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where psurf is the average surface pressure, d is the depth of the top of the reservoir, h is the height of the reservoir and dp/dz is the 

hydrostatic gradient. We assume that, under rate-controlled wells, a new steady-state pressure distribution is reached quickly after 

production begins. At any point in the reservoir, it is the sum of a pressure high around the injector and a pressure-low around the producer. 

For a point x between the two wells - where x is the distance from the injector and (L – x) is the distance from the producer - these effects 

can be expressed as 
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where µ(x) is the water viscosity at point x, assuming that it varies linearly between the end-values associated with TInj and T0. x∞ is a point 

so far away from the doublet that it is unaffected by pressure changes. The absolute pressure at point x is then 
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and the pressure drop Δp that has to be overcome by pumping is 
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For pressure at the wells, 0 and L are substituted with rWell and (L – rWell) because eq. (1.6) is undefined for x = 0 and x = L, and because 

the pressure regime inside the wells is different from that in the reservoir. 

Fig. 1b shows the analytical pressure profile for a doublet with 1km well spacing. The same curve extracted from two DARTS-Ana and 

DARTS-Full is plotted for comparison. The match between all three is very close, except in the direct vicinity of the wells. This is because 

the Darts solution averages pressure across 10m cells and cannot reflect the peak accurately.  

2.1 Time of thermal breakthrough 

From the assumptions of Darcy flow and local thermal equilibrium, it follows that the thermal front moves with a velocity proportional 

to that of the fluid particles. 
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The time it takes the cold front to spread from the injector to the producer is given by the integral of its velocity along the doublet axis.  
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Figure 2. Time of thermal breakthrough (TBT) calculated for different well spacings. Analytical solution compared with DARTS-

Ana (no confining layers) and DARTS-Full (confining layers). 
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This is the analytical solution for cold front propagation published by Gringarten and Sauty (1975), in the version that assumes no heat 

transfer between reservoir and confining layers. For numerical validation, we simulated different doublets with a range of well spacings 

and monitored production temperature. We defined time of thermal breakthrough as the year in which TPrd drops below its initial value 

by 0.1K. The solutions match up to well spacings above 1000m, where the error introduced by this assumptions becomes noticeable (Fig. 

2). Time of breakthrough for a spacing of 1600m is estimated as 94 years, compared to ca. 102 years in the full Darts solution.  

Gringarten and Sauty also provide a parameter (referred to as λ or k) that can be added to the equation to describe this heat exchange and 

make temperature predictions more accurate. It is relevant especially when the Gringarten solution is used to calculate TPrd after 

breakthrough. Pogacnik et al. (2023), however, showed that it has to be increased above its physical value, by an order of magnitude in 

some cases, to achieve an optimal fit with trusted numerical solutions. Given the good results for time of breakthrough, and given that in 

low-enthalpy heating applications, ΔTMax between production and injection temperature is limited, adding this parameter does not 

significantly improve our results. 

2.3 Transient production temperature 

We identified seven geological and technical parameters that control the shape of the temperature decline after thermal breakthrough: 

Well spacing, reservoir depth and height, injection temperature, flow rate, porosity (and permeability through a fixed correlation), and the 

thermal conductivity of the confining layers. Thermal conductivity of the reservoir layer has close to no influence on TPrd because 

advective heat transport is the dominant mechanism there. 

In DARTS, we simulated 1458 cases for 100 years each, covering the 7D parameter space (Table 1) in a full factorial design. Three values 

for each parameter were combined with each other, except confining layer conductivity which received only the two end points. 1319 

simulations were completed successfully, the remaining 139 did not converge within the pressure range permitted in DARTS because 

they described unrealistic setups that lead to extremely low production well pressures. They were omitted from further analysis.  

 

Figure 3. a) Fitted curves from the full factorial setup. Reference with all parameters at medium value and variants with one 

parameter at lower value each.  b) Best and worst three of the testing curves. c) and d) histograms of RMSE for fitted and tested 

curves, respectively. 

We calculated tBT as described above and used scipy's curve_fit (Virtanen et al., 2020) to find the optimal coefficients m and n to make 

eq. (1.1) match the shape of the observed temperature profile after thermal breakthrough (Fig. 3a). Until tBT, we assume that TPrd equals 

T0. This method resulted in better fits than matching the whole profile starting from t=0. The first time step after tBT was given a higher 

weight than the other time steps, ensuring that the fitted part of the curve started correctly from T0. A histogram of the root-mean squared 
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error (RMSE, Fig. 3c) shows that most temperature profiles can be fitted well. The average RMSE is just under 0.2 Kelvin and the 

distribution is strongly skewed towards small errors. Only 11 cases have an RMSE above 1K. They all describe a deep, thin reservoir with 

a large L, high q and high TInj. This leads to a steep but relatively straight temperature decline which is not matched ideally by the chosen 

curve type. 

The observed temperature curves informed a scipy LinearNDInterpolator object which returns the pair (m, n) for any combination of 

doublet parameters in the input range. We tested the predictive quality of these coefficients with 100 additional doublet setups, randomly 

distributed across the 7D space, and simulated in DARTS for comparison. Their TPrd profiles are predicted well in many but not all cases. 

The shape of the RMSE distribution is similar to that for the fitted cases, but higher with an average of 0.7K (Fig. 3d). 15 out of the 100 

cases have an RMSE above 1K, with two outliers above 2 and 4K. Fig. 3b shows the predicted and observed temperature curves for the 

three cases that were predicted with the smallest and largest RMSE, respectively.  

Most of the doublet setups that were predicted well show a similar type of TPrd curve. It drops not too early or too late and not too strongly 

or too weakly. Among the three profiles that were predicted the worst (purple in Fig. 3b) are two with almost an L-shape, a very early and 

steep decline followed by a relatively flat part. The third is the opposite, a slow but almost constant decline. Both shapes are edge cases 

that occur only in specific regions of the parameter space. They are also near the “holes” in the interpolator grid that were left by the 139 

cases that had to be excluded. The steep decline of the L-shape is the result of high q in deep and relatively thin reservoirs. A high TInj and 

small well spacing create the flat part. The third profile that is flat throughout, combines a shallow reservoir with a high TInj. Its shape is 

predicted relatively well, but the overall temperature level is wrong because it is highly sensitive to small changes in m. 

2.4 System Lifetime 

Expected lifetime LT is defined as the first year when predicted TPrd is lower than TMin (Fig. 4). We calculated it for the 100 test cases for 

three different values of TMin each: 3K, 5K, and 10K below a case’s initial temperature T0. The prediction is good in most cases, especially 

for the 3K definition and lifetimes below 40 years. Above, the spread increases and there are more outliers. The RMSE is 6.9, 4.1 and 4.9 

years for accepted ΔT of 3, 5 and 10K, respectively. Without the one outlier whose temperature profile had been predicted very badly, 

these errors would be 2.8, 3.1 and 4.9 years. This second set of errors  matches better the clearly higher prediction quality for shorter 

lifetimes. 

 

Figure 4 Predicted lifetime vs calculated lifetime from DARTS simulations. Lifetime defined as reaching a T-drop of 3, 5 and 10K. 
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3. CONCLUSIONS 

We have predicted production temperature TPrd(t) and lifetime LT for a wide range of direct use geothermal doublet setups. From numerical 

simulations using DARTS, we sampled TPrd(t) on a full factorial grid across seven geological and technical parameters and fitted it with 

an equation that uses analytically calculated time of thermal breakthrough tBT and maximum temperature drop ΔTMax,, as well as two 

coefficients m and n. We showed that linear interpolation of m and n on a 7D grid allows to predict TPrd(t) for new combinations in the 

parameter range with a mean RMSE of 0.7K. For Doublets near the middle of the space, the error was lower, while combinations with 

particularly steep or particularly flat temperature curves were predicted less well. This is encouraging because most realistic doublet setups 

were predicted well. The ones with larger errors tend to represent scenarios unlikely to be planned in reality, such as combining a shallow 

reservoir with a high TInj which results in a ΔT of only a few degrees, or pumping a very high flowrate through a shallow reservoir with 

small well spacing, resulting in extremely fast cooling. Given that each parameter was only sampled with three values and that about 10% 

of the interpolation grid was unfilled, the fit could most likely be improved by filling the grid holes and making it denser.  

However, in a 7D parameter space, sampling even just one additional point on each axis would increase the number of required cases 

almost tenfold. In following research, we will therefore focus on approaches to improve predictive quality without exponentially 

increasing the number of training simulations. We will adjust the resolution of the parameter space based on which dimensions and regions 

are more or less sensitive to changes, and we will investigate the relationships between the doublet parameters and the two coefficients. 
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